skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallis, Benjamin J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Many glaciers on the Antarctic Peninsula have retreated and accelerated in recent decades. Here we show that there has been a widespread, quasi-synchronous, and sustained increase in grounding line discharge from glaciers on the west coast of the Antarctic Peninsula since 2018. Overall, the west Antarctic Peninsula discharge trends increased by over a factor of 3, from 50 Mt yr−2 during 2017 to 2020 up to 160 Mt yr−2 in the years following, leading to a 7.4 % increase in grounding line discharge since 2017. The acceleration in discharge was concentrated at glaciers connected to deep, cross-shelf troughs hosting warm-ocean waters, and the acceleration occurred during a period of anomalously high subsurface water temperatures on the continental shelf. Given that many of the affected glaciers have retreated over the past several decades in response to ocean warming, thereby highlighting their sensitivity to ocean forcing, we argue that the recent period of anomalously warm water was likely a key driver of the observed acceleration. However, the acceleration also occurred during a time of anomalously high atmospheric temperatures and glacier surface runoff, which could have contributed to speed-up by directly increasing basal water pressure and, by invigorating near-glacier ocean circulation, increasing submarine melt rates. The spatial pattern of glacier acceleration therefore provides an indication of glaciers that are exposed to warm-ocean water at depth and/or have active surface-to-bed hydrological connections; however, many stages in the chain of events leading to glacier acceleration, and how that response is affected by glacier-specific factors, remain insufficiently understood. Both atmospheric and ocean temperatures in this region and its surroundings are likely to increase further in the coming decades; therefore, there is a pressing need to improve our understanding of recent changes in Antarctic Peninsula glacier dynamics in response atmospheric and oceanic changes in order to improve projections of their behaviour over the coming century. 
    more » « less
  2. Abstract Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability. 
    more » « less